Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
نویسندگان
چکیده
This paper presents a novel channel fabrication technology of bulk-micromachined monolithic embedded polymer channels in silicon substrate. The fabrication process favorably obviates the need for sacrificial materials in surface-micromachined channels and wafer-bonding in conventional bulk-micromachined channels. Single-layer-deposited parylene C (poly-para-xylylene C) is selected as a structural material in the microfabricated channels/columns to conduct life science research. High pressure capacity can be obtained in these channels by the assistance of silicon substrate support to meet the needs of high-pressure loading conditions in microfluidic applications. The fabrication technology is completely compatible with further lithographic CMOS/MEMS processes, which enables the fabricated embedded structures to be totally integrated with on-chip micro/nano-sensors/actuators/structures for miniaturized lab-on-a-chip systems. An exemplary process was described to show the feasibility of combining bulk micromachining and surface micromachining techniques in process integration. Embedded channels in versatile cross-section profile designs have been fabricated and characterized to demonstrate their capabilities for various applications. A quasi-hemi-circular-shaped embedded parylene channel has been fabricated and verified to withstand inner pressure loadings higher than 1000 psi without failure for micro-high performance liquid chromatography (microHPLC) analysis. Fabrication of a high-aspect-ratio (internal channel height/internal channel width, greater than 20) quasi-rectangular-shaped embedded parylene channel has also been presented and characterized. Its implementation in a single-mask spiral parylene column longer than 1.1 m in a 3.3 mm x 3.3 mm square size on a chip has been demonstrated for prospective micro-gas chromatography (microGC) and high-density, high-efficiency separations. This proposed monolithic embedded channel technology can be extensively implemented to fabricate microchannels/columns in high-pressure microfluidics and high-performance/high-throughput chip-based micro total analysis systems (microTAS).
منابع مشابه
Micro magnetic stir-bar mixer integrated with parylene microfluidic channels.
Previously, we reported a micro magnetic stir-bar mixer driven by an external rotating magnetic field and its rapid mixing performance in polydimethyl-siloxane (PDMS) channels. The PDMS piece with embedded fluid channels were manually aligned to a glass substrate and assembled. In this paper, we report the fabrication and testing results of a micro magnetic stir-bar monolithically integrated in...
متن کاملFabrication of Copper and Iron Nano/Micro Structures on Semiconducting Substrate and Their Electrical Characterization
In this paper, we have studied the electrical properties of the randomly distributed metallic (Co and Fe) nano/ micro wires on Silicon substrate. Deposition was carried out potentiostatically into the pores of the track-etch polycarbonate membrane spin coated onto the Si substrate. Spin coated films were irradiated with 150MeV Ni (+11) ions at a fluence of 8E7 ions/cm2, followed by UV irradiati...
متن کاملMicrofabricated Plastic Capillary Systems with Photo-definable Hydrophilic and Hydrophobic Regions
In this paper we present a monolithic fabrication process for microcapillary sys tems that permits the formation of stable, photo-definable hydrophobic ( ) and hydrophilic ( ) regions on plastic channels. Using this process we have demonstrated a simple injector that uses a hydrophobic patch for cutting and transporting sample drops. Hydrophobic regions are formed by coating the inner walls wit...
متن کاملFabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching
In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...
متن کاملFabrication and Characterization of a New MEMS Capacitive Microphone using Perforated Diaphragm
In this paper, a novel single-chip MEMS capacitive microphone is presented. The novelties of this method relies on the moveable aluminum (Al) diaphragm positioned over the backplate electrode, where the diaphragm includes a plurality of holes to allow the air in the gap between the electrode and diaphragm to escape and thus reduce acoustical damping in the microphone. Spin-on-glass (SOG) was us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2006